Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells

نویسندگان

  • Leifeng Chen
  • Hong He
  • Shijun Zhang
  • Chen Xu
  • Jianjiang Zhao
  • Shichao Zhao
  • Yuhong Mi
  • Deren Yang
چکیده

The power conversion efficiency (PCE) of single-wall carbon nanotube (SCNT)/n-type crystalline silicon heterojunction photovoltaic devices is significantly improved by Au doping. It is found that the overall PCE was significantly increased to threefold. The efficiency enhancement of photovoltaic devices is mainly the improved electrical conductivity of SCNT by increasing the carrier concentration and the enhancing the absorbance of active layers by Au nanoparticles. The Au doping can lead to an increase of the open circuit voltage through adjusting the Fermi level of SCNT and then enhancing the built-in potential in the SCNT/n-Si junction. This fabrication is easy, cost-effective, and easily scaled up, which demonstrates that such Au-doped SCNT/Si cells possess promising potential in energy harvesting application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-walled Carbon Nanotubes for Heterojunction Solar Cells

Single-walled carbon nanotubes (SWNTs) with outstanding electronic, optical, mechanical and thermal properties are expected to be the most promising materials for next-generation energy as well as optical and electronic devices. However, the structure-controlled assembling of SWNTs to macroscale for various devices is still challenging. This study focused on the SWNT assemblies for improving th...

متن کامل

P-type properties of micro and nano-structured carbon films from hydrocarbon palm oil in photovoltaic heterojunction solar cell applications (16 Bold)

The micro and nano-structured amorphous carbon as p-type films prepared from natural palm oil precursor for heterojunction solar cell were presented. Field-emission scanning electron microscopy (FESEM) revealed the micro and nano structured films had particle size in the range of 382 nm to 689 nm and 28 to 34 nm, respectively. The energy-dispersive spectroscopy (EDS) showed the existing of carb...

متن کامل

Complex And Nano-Structured Amorphous Carbon Films From Hydrocarbon Palm Oil As A P-Type In Photovoltaic Heterojunction Solar Cell Applications

The complex and nano-structured amorphous carbon as p-type films prepared from natural palm oil precursor for heterojunction solar cell were presented. Field-emission scanning electron microscopy (FESEM) revealed the nano structured films had particle size in the range of 28 to 34 nm. The energy-dispersive spectroscopy (EDS) showed the existing of carbon in complex-structured amorphous carbon f...

متن کامل

Structured SWNTs and Graphene for Solar Cells

We propose the concept of structured single-walled carbon nanotubes (SWNTs) for the applications of heterojunction solar cells and dye-sensitized solar cells (DSSCs). The structure of SWNTs was controlled and modified by a simple water vapor treatment, which was originally developed by our group. Compared with the graphene-Si solar cell and the SWNT-Si solar cell using the random-oriented SWNT ...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013